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Long-term monitoring of tropical bats for anthropogenic impact assessment:
Gauging the statistical power to detect population change
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a b s t r a c t

Bats are ecologically important mammals in tropical ecosystems; however, their populations face numer-
ous environmental threats related to climate change, habitat loss, fragmentation, hunting, and emerging
diseases. Thus, there is a pressing need to develop and implement large-scale networks to monitor trends
in bat populations over extended time periods. Using data from a range of Neotropical and Paleotropical
bat assemblages, we assessed the ability for long-term monitoring programs to reliably detect temporal
trends in species abundance. We explored the magnitude of within-site temporal variation in abundance
and evaluated the statistical power of a suite of different sampling designs for several different bat spe-
cies and ensembles. Despite pronounced temporal variation in abundance of most tropical bat species,
power simulations suggest that long-term monitoring programs (P20 years) can detect population
trends of 5% per year or more with adequate statistical power (P0.9). However, shorter monitoring pro-
grams (610 years) have insufficient power for trend detection. Overall, our analyses demonstrate that a
monitoring program extending over 20 years with four surveys conducted biennially on five plots per
monitoring site would have the potential for detecting a 5% annual change in abundance for a suite of
bat species from different ensembles. The likelihood of reaching adequate statistical power was sensitive
to initial species abundance and the magnitude of count variation, stressing that only the most abundant
species in an assemblage and those with generally low variation in abundance should be considered for
detailed population monitoring.
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1. Introduction

Human-induced environmental changes are altering the Earth’s
biota at unprecedented rates, threatening the long-term persis-
tence of many animal and plant species. Large-scale monitoring
networks are critical for understanding and predicting species re-
sponses to anthropogenic change and habitat alteration, and ulti-
mately for long-term biodiversity conservation.

Bats (Chiroptera), currently with 1150 recognized extant spe-
cies (Schipper et al., 2008), are major contributors to mammalian
biodiversity, comprising about 20% of mammalian species globally
(Simmons, 2005). Bats combine a range of features that make them
excellent bioindicators of human-induced changes with respect to
climate change and habitat quality, including a cosmopolitan dis-
tribution with high functional and taxonomic diversity (Jones
et al., 2009). Moreover, many species fulfill key ecosystem services,
particularly in tropical ecosystems, as pollinators, seed dispersers,
and control agents of arthropod populations (e.g. Kalka et al., 2008;
Kelm et al., 2008; Lobova et al., 2009; von Helversen and Winter,
2003; Williams-Guillén et al., 2008). Bats are also excellent indica-
tors of environmental change because they respond to a wide
range of global phenomena and environmental stressors such as
urbanization, agricultural intensification, forest disturbances (e.g.
logging, oil extraction), habitat loss and fragmentation, global cli-
mate change, and overhunting. Finally, the responses of bats to
habitat disturbance are often associated with those of other taxa
(e.g. Bass et al., 2010; Jones et al., 2009).

Worldwide, populations of many bat species are declining,
mainly as a consequence of extensive habitat loss and degradation.
Globally, almost one fourth of all bat species are considered threa-
tened (Schipper et al., 2008). Thus, many bat species require con-
servation efforts and there is an urgent need for the
implementation of a global network for monitoring bat popula-
tions (Jones et al., 2009). However, current monitoring programs
for bats are restricted to temperate regions and mostly limited in
scope and scale, primarily focusing on single-species at a local level
(Betke et al., 2008; Hristov et al., 2010; O’Shea and Bogan, 2003;
Walsh et al., 2003). This is despite the fact that in both the Old
and New World tropics, many bat species are threatened by ram-
pant deforestation and concomitant loss and fragmentation of hab-
itat (IUCN, 2009; Lane et al., 2006). Thus far, bats have not been
included in established long-term monitoring programs in the tro-
pics such as Conservation International’s Tropical Ecology, Assess-
ment and Monitoring (TEAM) network (www.teamnetwork.org).
Given their importance in tropical ecosystems, their value as bioin-
dicators and their vulnerability (Jones et al., 2009), monitoring of
tropical bats to assess population trends over longer time scales
is urgently needed. However, implementation of any monitoring
program requires scientifically rigorous and statistically defensible
efforts to ensure that monitoring data provide reliable results.

Drawing from numerous empirical datasets based on a repre-
sentative sample of Neotropical and Paleotropical bat assemblages,
we herein assess the potential for a monitoring program to reliably
detect temporal trends in relative species abundance of tropical
bats. Such an assessment should consider the magnitude of change
(the effect size) that is thought to be an appropriate threshold, the
statistical power needed to confidently detect a particular change,
and the sample size. Although evaluating trade-offs between vari-
ables of survey design and sample size through a priori power anal-
yses should be integral to planning efforts (Fairweather, 1991;
Gibbs et al., 1998; Legg and Nagy, 2006; Steidl et al., 1997), statis-
tical power analyses are seldom considered even at the develop-
ment stage in long-term monitoring programs (Gibbs and
Ramirez de Arellano, 2007; Gibbs et al., 1999; Legg and Nagy,
2006; Marsh and Trenham, 2008). Ignoring issues of statistical

power may lead to resources being spent on monitoring programs
that have little chance of detecting trends or, conversely, may re-
sult in monitoring efforts in excess of what is needed, hence essen-
tially wasting valuable resources by under- or oversampling (Gibbs
et al., 1999). In the present study, we use power analyses to deter-
mine the necessary sampling effort required to detect biologically
significant population trends and to identify appropriate survey
techniques and sampling designs for monitoring tropical bat
species.

Statistical power is a measure of the confidence with which a
statistical test can detect a particular effect when such an effect
does indeed exist (Anderson, 1998; Cohen, 1988; Gerrodette,
1987). Thus, statistical power is the probability that a monitoring
program will detect a trend in population abundance when such
a trend has occurred or is occurring, despite inherent ‘‘noise” in
the data. The selection of an appropriate monitoring design is lar-
gely a question of managing factors that influence Type II error rate
(b) (Anderson, 1998). Power (1 � b) depends on interactions be-
tween sample size (number of sites), the duration (years) for which
a population is being monitored, the frequency of surveys (within
and between years), the magnitude of change (trend) to be de-
tected, variability in the data, and the level of significance (a) of
the statistical test being used (Fairweather, 1991; Field et al.,
2005; Thompson et al., 1998).

Abundance data often show high variance, thus strategies that
can reduce variance are especially important for achieving high
statistical power. The decision of which species (or ensembles of
species) to focus monitoring studies upon involves a consideration
of the repeatability of monitoring data for a particular species. Ide-
ally, species should be targeted that can be consistently measured
at an acceptable level of precision (Seavy and Reynolds, 2007).

To this end, we explored the magnitude of within-site temporal
variation in abundance at the level of individual bat species and
ensembles for a range of datasets. The magnitude of variation
can indicate the degree of measurement error in abundance esti-
mates for a particular species, and thus provide information on
how reliable such measurements of a given species will be for
detecting differences in assemblages. Using mean and variance
parameters from a variety of datasets, we evaluated the statistical
power of a suite of alternative sampling designs for detecting long-
term trends in the relative abundance of bat populations. We
explored trade-offs in spatial and temporal allocation of sampling
effort needed to achieve reasonable statistical power to detect
trends for selected bat species and different ensembles over a
range of effect sizes. Specifically, we focused on the trade-offs be-
tween number of sampling sites, sampling frequency within and
between years, and duration of the monitoring program. Finally,
we assessed the efficiency of various sampling strategies by mod-
eling power estimates for designs that can achieve the desired
power goal as a function of design characteristics and species
attributes.

2. Methods

2.1. Within-site temporal variation in abundance

Within-site temporal variation is the sum of temporal variabil-
ity in abundance across successive surveys and sample error
(methodological) associated with variation in species detectability
(Carlson and Schmiegelow, 2002). To assess the consistency of
abundance estimates over time for particular species or ensembles,
we calculated the coefficient of variation (CV) of relative abun-
dance across repeated surveys for 121 bat species from 24 Neo-
tropical and Paleotropical locations (Appendix). Calculations were
based on capture data (mist nets: frugivores, nectarivores, gleaning

2798 C.F.J. Meyer et al. / Biological Conservation 143 (2010) 2797–2807



Author's personal copy

animalivores; harp traps: Paleotropical aerial insectivores, relative
abundance measured as number of bats captured per square meter
net/trap-hour) or acoustic data (Neotropical aerial insectivores, rel-
ative activity measured as number of bat passes per minute) from
one sampling site per location. To test for differences in the magni-
tude of CV between ensembles, we fitted a linear mixed model
(LMM) with species and location specified as partially crossed ran-
dom factors using the lme4 package (Bates, 2007) in (R Develop-
ment Core Team, 2008).

This analysis and the subsequent power calculations involve
synthesis of datasets that inevitably encompass certain variation
in sampling strategy and that differ to some degree in terms of spa-
tio-temporal scale. Nonetheless, we believe that sampling methods
were sufficiently consistent across studies to provide reliable and
comparable estimates of temporal variation in population abun-
dance. For datasets originating from fragmented or otherwise dis-
turbed areas, we included only data from control plots in
unfragmented or mostly undisturbed forest in the analysis to en-
sure maximum comparability of datasets.

2.2. Parameters and data sources for power analyses

Power analyses were restricted to a subset of available datasets,
covering on average 3.2 (SD 1.4, range 2–6) years of sampling. Spe-
cifically, we used estimates of the initial magnitude and variance in
relative abundance at a particular sampling transect/plot (i.e. a site
within a study location with multiple nets) from five Neotropical
and four Paleotropical datasets as input for the power analyses
(Appendix). For assessing power to detect trends over 10 or
20 years it would certainly be desirable to use estimates of tempo-
ral variance stemming from datasets that cover longer time spans
as input for the power calculations, however, such data currently
are not available for bats. Nonetheless, we believe that our data
incorporate a realistic range of temporal variance in estimates of
population abundance and thus can be used to obtain meaningful
power estimates. Capture rate, standardized to number of bats cap-
tured per 100 m2 net hours to account for varying sampling effort
between studies, was used as an index of relative population abun-
dance (number of bat passes/min in the case of the one dataset
based on acoustic surveys). For each dataset, we performed the
power analyses for a spectrum of species covering a range of initial
mean estimates of abundance and variance characteristics (34 spe-
cies total with three to six species per dataset). Additionally, we as-
sessed statistical power at the functional level, pooling species by
ensemble (frugivores, nectarivores, gleaning animalivores, aerial
insectivores). In each case, we calculated mean estimates of rela-
tive abundance and standard deviations for a particular plot based
on repeated surveys conducted on the same plot as an estimate of
temporal variance. Temporal variances were modeled as a single,
pooled estimate of variation (i.e. pooling variation within and be-
tween years since it would have been difficult to partition these
two sources of variation in a consistent way due to the heterogene-
ity of the datasets). For survey scenarios involving multiple plots,
spatial variation was accounted for by providing different initial
mean values for each of the plots being monitored from which
trends could then be projected.

2.3. Power simulations

We constructed statistical power curves for various combina-
tions of spatial and temporal replicates using a Monte Carlo simu-
lation approach as implemented in the software MONITOR v. 10.0
(Gibbs and Ramirez de Arellano, 2007). To estimate power in MON-
ITOR, one needs to define the desired sampling design structure
(e.g. frequency of surveys, number of survey years, number of plots)
and provide estimates of the magnitude and variation in abundance

estimates as input for the program. We used a plot-specific sam-
pling structure in which we specified initial abundance values
and sampling variances for each plot. These quantities were derived
from several empirical data sets as detailed above. We estimated
power for 10 and 20 years of surveys performed annually or bienni-
ally along one, three, or five sampling plots and involving two,
three, or four repeat surveys per plot per year. Because for trend
analysis the risk of missing a significant change can be considered
to be at least as important as the risk of finding a significant differ-
ence where it does not exist (Anderson, 1998; Di Stefano, 2003), we
set the maximum acceptable Type I (a) and Type II (b) error rates
both to 0.1 (Di Stefano, 2003; Purcell et al., 2005; Steidl et al.,
1997). Consequently, our desired power level (1 � b) was 0.9, which
is often recommended for reliable trend detection (Gibbs and Ra-
mirez de Arellano, 2007; Steidl et al., 1997). Power estimates in
MONITOR were based on 1000 iterations and simulations were
run using the recommended, default options of exponential trend
projection, constant CV over time, and assuming asynchronous spa-
tial autocorrelation for multiple plot designs (Gibbs and Ramirez de
Arellano, 2007). The analysis steps implemented in MONITOR differ
somewhat depending on whether power is estimated for single- or
multiple-plot situations. For survey designs consisting of repeated
sampling on a single plot, trends are projected from the initial
abundance estimate over the series of previously defined survey
occasions. At each survey occasion, sample measures are generated
as random deviates drawn from a distribution with mean equal to
the projected value at a particular monitoring occasion and with a
variance approximated by the standard deviation in initial abun-
dance. Power is then calculated based on the proportion of itera-
tions in which the slope estimates of a least-squares regression of
the plot of sample abundances versus survey occasion differ
significantly from zero (Gibbs and Ramirez de Arellano, 2007). For
monitoring programs consisting of multiple plots, MONITOR uses
a ‘route regression’ approach, whereby trends in sample counts
are generated as above for each survey occasion and plot. The slope
of a least-squares regression of sample abundances versus survey
occasion is determined for each plot and each trend, and then aver-
aged across plots. The proportion of iterations in which the mean
slope estimates differ significantly from zero based on a t-test is
then used to estimate power (Gibbs and Ramirez de Arellano,
2007). We evaluated the significance of a trend based on two-tailed
t-tests, as we were interested in both negative and positive trends
in the populations being monitored. Because two-tailed tests may
yield lower power than one-tailed tests (Gibbs and Ramirez de Arel-
lano, 2007), our power estimates can generally be considered as
conservative. For any specified sampling scenario, we estimated
power for a set of equal interval trends, from a precipitous 25% de-
cline per time unit to a 25% increase, in 5% increments. For example,
an effect size of �10% per year with 20 sampling years is equal to a
net change of �86.5% over 20 years (=overall trend).

Although low to moderate degrees of temporal autocorrelation
are often found in successive estimates of abundance, its effect on
power to detect trends appears to be modest, hence assuming
independence of sequential values seems reasonable in most cases
(Gibbs and Ramirez de Arellano, 2007). We tested this assumption
for a subset of the data by performing power simulations with a
moderate level of positive serial autocorrelation (0.5) introduced.
These analyses confirmed that the influence of temporal autocorre-
lation on power estimates was typically low (results not shown).

2.4. Determinants of adequate power level

To provide a synthesis of the power simulations, we modeled
the probability of reaching the desired power level (0.9) to detect
a �25% trend as a function of monitoring design parameters and
species characteristics. We fitted a generalized linear mixed-effects
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model (GLMM, logit link and binomial errors) to the binary out-
come data (1: desired power achieved, P0.9; 0: desired power
not achieved, <0.9), using the lme4 package (Bates, 2007) in (R
Development Core Team, 2008). The most complex model included
a suite of monitoring design options (number of plots, number of
surveys per plot, survey interval, number of survey years) and spe-
cies attributes (ensemble, initial relative abundance, CV of relative
abundance) as fixed effects, and a variance component due to a
random effect of species identity. We used likelihood ratio tests
to assess the significance of individual model terms (Pinheiro and
Bates, 2000). Following model simplification, we tested fixed ef-
fects retained in the minimum adequate model (MAM) using Wald
tests. Separate GLMMs were performed for Neotropical (ground
net data) and Paleotropical data sets (ground net and harp trap
data, with capture method included as an additional fixed effect
in the GLMM).

3. Results

3.1. Within-site temporal variation in abundance

At both the species and ensemble level, the CV of relative abun-
dance was generally high, and varied substantially across species
and locations (median CV 1.86, range: 0.211–9.75, Fig. 1 and 2).
Only a few species had CV values comparable in magnitude for
the majority of locations where they occurred (Fig. 2). CV values
were significantly higher for Paleotropical than Neotropical species
(LMM, v2 = 3.95, df = 1, P = 0.047) and there were significant differ-
ences in the magnitude of temporal variation between ensembles
(LMM, v2 = 14.56, df = 3, P = 0.002). Nectarivores had significantly
higher CV values than frugivores, gleaning animalivores, or aerial

insectivores (multiple comparisons using Tukey contrasts,
z P 3.47, P < 0.01). When aerial insectivores were compared sepa-
rately by region to take into account different sampling methods,
Neotropical aerial insectivores that were acoustically sampled
had significantly lower CVs than Paleotropical species based on
captures with mistnets and harp traps (LMM, v2 = 5.34, df = 1,
P = 0.021; Fig. 2).

3.2. Power simulations

Results of the power simulations reported below are necessarily
a representative sample of the full results, selected to highlight
some of the major differences between the survey designs we ex-
plored. Although we performed power simulations for both posi-
tive and negative trends, we focus here on results that concern
the ability to detect negative trends in population abundance, be-
cause this is the most relevant issue in long-term, conservation-
oriented monitoring programs.

The duration of monitoring was clearly important in determin-
ing whether population trends could be detected. In many in-
stances, 10 years of monitoring were insufficient to detect a
significant decline in relative abundance with adequate power, in
particular with effect sizes of lower magnitude (e.g. �10%). Even
the maximum number of visits (four) and plots (five) typically pro-
vided inadequate power to detect annual declines of 5% or 10%
with only 10 years of sampling. Conversely, 20 years of sampling
yielded adequate power to detect decreases in abundance for most
species (see Figs. 3 and 4 for examples).

The large degree of between-site spatial variation in surveys
on multiple plots made trend-detection more difficult compared
to monitoring of single plots, thus requiring a larger number of

Fig. 1. Boxplots showing temporal variation in relative abundance of bats, expressed as coefficient of variation (CV), across a range of Neotropical and Paleotropical locations,
with species pooled by ensemble. In each panel, the dotted line separates Neotropical (left) from Paleotropical datasets (right). Plots shown are based on acoustic data
(Gamboa and BCNM, Panama), harp trapping (Lubuk Baung, Malaysia) and mist netting data (all other locations) and include data from one sampling site per location and
from at least two species per location and ensemble.
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plots to be surveyed to compensate for this effect. This is re-
flected in the fact that power was often lower in the case of three
plots compared to only one or five plots (Figs. 3–5). Even 20 years
of monitoring on three plots were insufficient to attain adequate
power for the majority of species included in the simulations, in
particular for a 5% declining trend per year (Table 1). With three
plots, varying the magnitude of the projected trend generally had

a large effect on power estimates. While the desired power level
was reached at least for a variety of species for annual population
declines of 10% or 25% per year, annual declining trends of 5%
could only be detected for two species (Table 1). Increasing the
number of repeat surveys from two to four in these three-plot
sampling designs had comparatively little effect on power
estimates.

Fig. 2. Within-site temporal variation in relative abundance, expressed as coefficient of variation (CV), for 18 frugivorous bat species from several Neotropical locations. Plots
are based on ground-level mist netting data from one sampling site per location and species present at a minimum of four separate locations.

Fig. 3. Influence of number of survey occasions per year for annual (left) and biennial surveys (right) along different numbers of sampling plots (one, three, and five) on power
to detect a 10% decrease over 10 or 20 years, respectively, for five bat species sampled with ground-level mist nets at Nouragues, French Guiana. The dotted line indicates the
desired power level at 0.90 (b = 0.10). AJAM = Artibeus jamaicensis; LSIL = Lophostoma silvicolum; LSPU = Lionycteris spurelli; LTHO = Lonchophylla thomasi; RPUM = Rhinophylla
pumilio.

C.F.J. Meyer et al. / Biological Conservation 143 (2010) 2797–2807 2801
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For a monitoring program that extends over 20 years, increasing
the number of plots to five would allow reliable trend detection
even for annual changes in population levels of �5% or �10% (Ta-
ble 2, Figs. 3 and 4). Moreover, in the latter case, using biennial sur-
veys would suffice to attain adequate power to detect a 10% decline

for almost all species included in the simulations with only two re-
peat visits per plot, and even smaller changes of �5% would be
detectable by increasing the number of sampling occasions per
plot to four (Table 2). Depending on the desired effect size, a statis-
tically robust monitoring program based on two-four repeat visits

Fig. 4. Influence of number of survey occasions per year for annual (left) and biennial (right) surveys along different numbers of sampling plots (one, three, and five) on power
to detect a 10% decrease over 10 or 20 years, respectively, for six bat species sampled with ground-level mist nets in the Barro Colorado Nature Monument, Panama. The
dotted line indicates the desired power level at 0.90 (b = 0.10). AJAM = Artibeus jamaicensis; ALIT = A. lituratus; CCAS = Carollia castanea; LSIL = Lophostoma silvicolum;
MCRE = Mimon crenulatum; TSAU = Tonatia saurophila.

Fig. 5. Influence of number of survey occasions per year for annual surveys conducted on one sampling plot on power to detect a 10% decrease over 10 or 20 years,
respectively, for 12 bat species sampled with harp traps at Lubuk Baung, Malaysia (left), and acoustically in Gamboa, Panama (right). The dotted line indicates the desired
power level at 0.90 (b = 0.10). BMAC = Balionycteris maculata; CBRA = Cynopterus brachyotis; CCEN = Centronycteris centralis; CGRE = Cynomops greenhalli; DALB = Diclidurus
albus; ESPEC = Eumops spec.; HRID = Hipposideros ridleyi; KINT = Kerivoula intermedia; MALB = Myotis albescens; MNIG = M. nigricans; NTRA = Nycteris tragata; RREF = Rhinol-
ophus refulgens.

2802 C.F.J. Meyer et al. / Biological Conservation 143 (2010) 2797–2807



Author's personal copy

to five sampling plots surveyed every second year would provide
adequate power with minimal expense.

3.3. Determinants of adequate power level

GLMM modeling showed that for the Neotropical datasets the
probability of achieving the desired power level of 0.9 was sensi-

tive to each sample effort parameter and, in addition, differed sig-
nificantly between ensembles (Table 3). In contrast, there was no
such effect for Paleotropical datasets (Table 4). The likelihood of
reaching adequate power was significantly lower for Neotropical
gleaning animalivores compared to frugivorous and nectarivorous
species. Moreover, for Neotropical datasets the probability of
achieving adequate power was positively related to the initial

Table 1
Power to detect population decreases per unit time of 5%, 10%, or 25% over 20 years on three plots with surveys conducted annually for 21 species of tropical bats. Cases in which
the desired power level (0.9) was reached are highlighted in italics.

Species Ensemblea Locationb Trend: �5% �10% �25%
No. of surveys No. of surveys No. of surveys

2 3 4 2 3 4 2 3 4

Artibeus jamaicensis FRUG BCNM, Panama 0.72 0.82 0.89 0.93 0.97 1.00 0.96 0.98 0.99
A. jamaicensis FRUG Nouragues, French Guiana 0.64 0.77 0.84 0.89 0.96 0.98 0.94 0.98 1.00
A. jamaicensis FRUG St. Eugène, French Guiana 0.33 0.31 0.28 0.28 0.28 0.26 0.30 0.25 0.24
A. lituratus FRUG BCNM, Panama 0.67 0.80 0.87 0.93 0.96 0.99 0.94 0.98 0.99
A. obscurus FRUG Una, Brazil 0.55 0.61 0.63 0.67 0.68 0.73 0.64 0.72 0.73
Carollia castanea FRUG BCNM, Panama 0.43 0.48 0.49 0.50 0.53 0.56 0.51 0.53 0.54
C. perspicillata FRUG Una, Brazil 0.82 0.90 0.95 0.98 1.00 1.00 0.99 1.00 1.00
Micropteropus pusillus FRUG Comoé, Ivory Coast 0.19 0.21 0.19 0.22 0.20 0.20 0.20 0.21 0.21
Nanonycteris veldkampii FRUG Comoé, Ivory Coast 0.46 0.52 0.58 0.60 0.62 0.69 0.63 0.65 0.73
Rhinophylla pumilio FRUG Nouragues, French Guiana 0.48 0.56 0.58 0.61 0.66 0.73 0.65 0.71 0.76
R. pumilio FRUG St. Eugène, French Guiana 0.56 0.62 0.64 0.67 0.71 0.77 0.69 0.76 0.77
R. pumilio FRUG Una, Brazil 0.45 0.59 0.62 0.67 0.78 0.82 0.70 0.82 0.87
Choeroniscus minor NECT St. Eugène, French Guiana 0.24 0.32 0.33 0.35 0.39 0.38 0.37 0.39 0.43
Lionycteris spurelli NECT Nouragues, French Guiana 0.53 0.69 0.78 0.83 0.90 0.96 0.87 0.93 0.97
Lonchophylla thomasi NECT Nouragues, French Guiana 0.66 0.81 0.85 0.92 0.96 0.99 0.95 0.99 1.00
L. thomasi NECT St. Eugène, French Guiana 0.24 0.26 0.23 0.21 0.17 0.16 0.22 0.17 0.15
Lophostoma silvicolum GLANIM BCNM, Panama 0.19 0.18 0.17 0.15 0.15 0.12 0.17 0.11 0.12
L. silvicolum GLANIM Nouragues, French Guiana 0.29 0.33 0.33 0.33 0.34 0.35 0.34 0.36 0.34
Mimon crenulatum GLANIM BCNM, Panama 0.35 0.45 0.49 0.54 0.62 0.67 0.55 0.65 0.74
M. crenulatum GLANIM St. Eugène, French Guiana 0.49 0.59 0.69 0.70 0.79 0.85 0.76 0.80 0.87
Nycteris arge GLANIM Comoé, Ivory Coast 0.71 0.80 0.85 0.88 0.94 0.97 0.92 0.96 0.99
N. arge GLANIM Taï, Ivory Coast 0.95 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00
N. macrotis GLANIM Comoé, Ivory Coast 0.42 0.49 0.57 0.59 0.66 0.68 0.60 0.68 0.72
Tonatia saurophila GLANIM BCNM, Panama 0.19 0.21 0.16 0.16 0.11 0.08 0.14 0.09 0.05
T. saurophila GLANIM St. Eugène, French Guiana 0.32 0.35 0.38 0.38 0.41 0.44 0.39 0.40 0.44
Rhinolophus alcyone AEINS Comoé, Ivory Coast 0.77 0.86 0.90 0.92 0.97 0.98 0.95 0.98 0.99
R. alcyone AEINS Taï, Ivory Coast 0.33 0.37 0.41 0.42 0.46 0.52 0.44 0.47 0.54
Scotophilus viridis AEINS Comoé, Ivory Coast 0.54 0.64 0.75 0.78 0.85 0.89 0.80 0.89 0.90

a FRUG = frugivore, NECT = nectarivore, GLANIM = gleaning animalivore, AEINS = aerial insectivore.
b BCNM = Barro Colorado Nature Monument.

Table 2
Power to detect a population decrease per unit time of 5% and 10%, respectively, over 20 years on five plots with surveys conducted annually or biennially for 13 species of tropical
bats. Cases in which the desired power level (0.9) was reached are highlighted in italics.

Species Ensemblea Locationb Annual surveys Biennial surveys

Trend: �5% �10% Trend: �5% �10%
No. of surveys No. of surveys No. of surveys No. of surveys

2 3 4 2 3 4 2 3 4 2 3 4

Artibeus jamaicensis FRUG BCNM, Panama 0.97 0.99 1.00 1.00 1.00 1.00 0.87 0.95 0.99 0.99 1.00 1.00
A. jamaicensis FRUG Nouragues, French Guiana 0.88 0.96 0.98 1.00 1.00 1.00 0.67 0.81 0.90 0.94 0.98 1.00
A. lituratus FRUG BCNM, Panama 0.96 0.99 1.00 1.00 1.00 1.00 0.84 0.92 0.97 0.99 1.00 1.00
A. obscurus FRUG Una, Brazil 0.97 0.99 1.00 1.00 1.00 1.00 0.88 0.95 0.98 0.99 1.00 1.00
Carollia castanea FRUG BCNM, Panama 0.89 0.95 0.98 1.00 1.00 1.00 0.77 0.87 0.92 0.96 0.98 1.00
C. perspicillata FRUG Una, Brazil 0.99 1.00 1.00 1.00 1.00 1.00 0.91 0.97 0.99 1.00 1.00 1.00
Rhinophylla pumilio FRUG Nouragues, French Guiana 0.94 0.99 0.99 1.00 1.00 1.00 0.80 0.90 0.93 0.97 0.99 1.00
R. pumilio FRUG Una, Brazil 0.98 1.00 1.00 1.00 1.00 1.00 0.89 0.96 0.99 1.00 1.00 1.00
Lionycteris spurelli NECT Nouragues, French Guiana 0.94 0.99 1.00 1.00 1.00 1.00 0.80 0.93 0.96 0.99 1.00 1.00
Lonchophylla thomasi NECT Nouragues, French Guiana 0.91 0.96 0.99 0.99 1.00 1.00 0.76 0.86 0.94 0.96 0.99 0.99
Lophostoma silvicolum GLANIM BCNM, Panama 0.62 0.70 0.72 0.77 0.81 0.84 0.49 0.56 0.59 0.67 0.72 0.76
L. silvicolum GLANIM Nouragues, French Guiana 0.86 0.94 0.98 0.98 1.00 1.00 0.68 0.82 0.89 0.94 0.97 1.00
Mimon crenulatum GLANIM BCNM, Panama 0.84 0.93 0.98 0.98 1.00 1.00 0.66 0.78 0.87 0.91 0.97 1.00
Tonatia saurophila GLANIM BCNM, Panama 0.90 0.98 0.99 1.00 1.00 1.00 0.75 0.89 0.93 0.96 1.00 1.00
Nycteris arge GLANIM Taï, Ivory Coast 1.00 1.00 1.00 1.00 1.00 1.00 0.98 1.00 1.00 1.00 1.00 1.00
Rhinolophus alcyone AEINS Taï, Ivory Coast 0.96 0.99 1.00 1.00 1.00 1.00 0.87 0.93 0.97 0.99 1.00 1.00

a FRUG = frugivore, NECT = nectarivore, GLANIM = gleaning animalivore, AEINS = aerial insectivore.
b BCNM = Barro Colorado Nature Monument.

C.F.J. Meyer et al. / Biological Conservation 143 (2010) 2797–2807 2803



Author's personal copy

relative abundance. In contrast, for the Paleotropical datasets, the
CV of relative abundance was a strong predictor, with the ability
to attain adequate power decreasing with increased temporal var-
iation in species abundance.

4. Discussion

We compared the effectiveness of various sampling designs for
detecting temporal trends in relative abundance of tropical bats as
a prerequisite for establishing long-term monitoring programs.
Our power simulations revealed a pronounced effect of the dura-
tion of a monitoring program on the ability to detect trends in
bat species abundance. Monitoring over a period of only 10 years
had, in many cases, insufficient power to detect annual declines
of five or 10%. In contrast, 20 years of sampling yielded adequate
power to detect decreases in abundance for many more species.

This suggests that a monitoring program aimed at reliably detect-
ing population trends for many tropical bat species would need to
be implemented for a minimum of 20 years.

One of the prime considerations when designing a monitoring
program concerns the number of plots to be sampled at a particu-
lar location. Space should be sampled in a manner that permits
inference about the entire area of interest, based on the selected
sampling units (Pollock et al., 2002). To minimize sample error,
sampling multiple plots at a site is thus preferable to multiple
within-year visits to the same plot. The same plots then need to
be revisited during each survey to eliminate the plot-to-plot vari-
ation from the estimates of trend precision (Sims et al., 2006).
Our power simulations for the three-plot design showed that sev-
eral repeat visits per year are for the most part insufficient to de-
tect species declines with adequate statistical power. Thus, we
conclude that efforts should be directed at sampling more plots
rather than increasing the number of visits per plot. Conducting
sampling on five plots yielded adequate power levels to reliably
detect trends for most species examined. In the latter case, effi-
ciency could be increased with little loss of statistical power by
reducing survey effort to every other year. An alternative monitor-
ing approach for decreasing costs would be to perform annual sur-
veys during the early stages of the program, and then reduce the
frequency of monitoring (e.g. after 10 years) to a biennial sampling
scheme.

For a five-plot sampling scheme with biennial surveys, the fre-
quency of repeat visits per plot ultimately depends on the desired
sensitivity of the monitoring program (i.e. the magnitude of change
to be detected). Our results for the range of species studied suggest
that two repeat visits/plot would suffice to detect declines in the
10% range, whereas four visits to a plot may be necessary for
detecting annual changes of lower magnitude such as 5%. Negative
population trends of a magnitude as low as 1–2% per year may re-
sult in unacceptable probabilities of extinction in many animals
(Mace and Lande, 1991). Thus, conservation-oriented monitoring
programs should aim for being able to detect relatively small an-
nual population declines. Power analyses performed as part of
the UK’s National Bat Monitoring Program (NBMP) suggest that
NMBP sampling schemes should be able to detect annual declines
in the eight selected target species as small as 1–2% at power levels
over 90% (Walsh et al., 2003). However, this program is based on
monitoring many sites (ca. 2000) and relies on a large volunteer
force of >800 people to provide adequate geographical coverage.
Moreover, NMBP data largely stem from surveys of maternity col-
onies and hibernation sites in temperate regions and thus are
inherently different from monitoring data that would be obtained
from a plot or transect-based sampling scheme. Trends of a magni-
tude as low as 1–2% per year may be very difficult to detect for spe-
cies that are characterized by high variance in abundance
estimates, as is the case for most tropical bat species (see below).
Nonetheless, our results are reassuring insofar as a monitoring pro-
gram extending over 20 years with four surveys conducted bienni-
ally on five plots would have the potential for detecting a 5%
change in abundance per time unit for a variety of bat species from
different ensembles. The ability to detect meaningful trends may
be thwarted by large variation in species detectability, which in-
creases sampling error. Considering the fact that a certain number
of repeat surveys is essential if reliable detectability estimates are
to be obtained (MacKenzie and Kendall, 2002; Royle and Nichols,
2003), four visits per plot probably represent a good balance be-
tween what is required for sound statistical inference and for
detecting change of a magnitude that is biologically meaningful,
and what could be achieved in practice. In general, monitoring ef-
forts for bats could feasibly be combined in space and time with
those for other taxa such as birds, which would help to minimize
financial costs.

Table 3
Results from GLMM analyses assessing the probability of reaching the desired
statistical power (0.9) to detect a 25% decline per unit time in a monitoring program
for Neotropical bats as a function of survey design and species characteristics.
Parameter estimates for the fixed effects retained in the minimum adequate model
are given.

Source of variation L-ratio v2 df P

Fixed effects
Ensemble 6.351 2 0.042
CV of relative abundance 2.230 1 0.135
Initial relative abundance 15.38 1 <0.0001
No. of survey years 74.91 1 <0.0001
Survey interval 45.57 1 <0.0001
No. of surveys per interval 35.74 2 <0.0001
No. of plots 471.8 2 <0.0001

Estimate (SE) z P

Intercept 2.905 (0.837) 3.471 0.001
Ensemble_GLANIM �3.591 (1.25) �2.872 0.004
Ensemble_NECT �1.412 (1.252) �1.128 0.259
Initial rel. abundance 1.801 (0.487) 3.698 0.000
No. survey years_20 2.946 (0.411) 7.164 0.000
Survey interval_2 �2.207 (0.366) �6.031 0.000
No. plots_3 �7.057 (0.63) �11.209 0.000
No. plots_5 1.115 (0.443) 2.516 0.012
No. surveys_3 1.689 (0.401) 4.213 0.000
No. surveys_4 2.242 (0.425) 5.276 0.000

Table 4
Results from GLMM analyses assessing the probability of reaching the desired
statistical power in a monitoring program for Paleotropical bats as a function of
survey design and species characteristics. Parameter estimates for the fixed effects
retained in the minimum adequate model are given.

Source of variation L-ratio v2 df P

Fixed effects
Ensemble 2.856 3 0.414
CV of relative abundance 18.99 1 <0.0001
Initial relative abundance 0.023 1 0.880
No. of survey years 38.38 1 <0.0001
Survey interval 15.00 1 0.0001
No. of surveys per interval 19.92 2 <0.0001
No. of plots 80.66 2 <0.0001

Estimate (SE) z P

Intercept 4.127 (1.409) 2.929 0.003
CV �1.913 (0.462) �4.144 0.000
No. survey years_20 4.65 (0.983) 4.729 0.000
Survey interval_2 �3.349 (1.084) �3.089 0.002
No. plots_3 �8.043 (1.432) �5.615 0.000
No. plots_5 �1.81 (1.397) �1.296 0.195
No. surveys_3 3.108 (1.172) 2.652 0.008
No. surveys_4 3.494 (0.926) 3.774 0.000
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Monitoring of bats will be complicated by the fact that several
tropical bat species exhibit seasonal, probably mostly short-dis-
tance habitat shifts (Stoner, 2001, 2005) and a few species even mi-
grate over longer distances (Fleming and Eby, 2003; Thomas,
1983). However, detailed knowledge of seasonal habitat shifts cur-
rently exists for only a handful of bat species and/or for only a few
tropical localities (Fleming and Eby, 2003). Trend detection re-
quires that a constant fraction of the population is encountered
over time intervals for making reliable comparisons (MacKenzie
et al., 2005) and trend estimates may thus be confounded if sea-
sonal shifts in relative abundance occur, for instance, along with
a declining trend. This suggests that the seasonal time window
for sampling should be restricted to the same period during all
monitoring years.

We found that the likelihood of reaching an adequate power le-
vel was sensitive to initial estimates of species abundance and
temporal variation. In line with other studies (Seavy and Reynolds,
2007; Sims et al., 2006), our results emphasize the importance of
considering the magnitude of this variation in a power analysis be-
cause design decisions depend on the relative magnitude of these
variance components. Prospective power analyses should be com-
plemented by an assessment of the precision of population esti-
mates, and monitoring programs should set acceptable levels of
precision (Seavy and Reynolds, 2007). Low statistical power in pop-
ulation monitoring protocols is primarily due to high variability
associated with measures of population size (Gibbs et al., 1998).
Gibbs et al. (1998) summarized data from 512 studies and found
average CV values to vary substantially across the 24 taxonomic
and ecological groups examined, ranging between 14% and 131%
(median 57%) overall, and averaging 93% for studies on bats. Thus,
with a mean of 231% (range 101–500%) across 24 studies, our ob-
served CV values were well above the variability indices for other
published studies. At the level of ensembles, our data suggest that
aerial insectivorous bats in the Neotropics would make good can-
didates for monitoring using acoustic sampling techniques due to
comparatively low temporal variation. Conversely, gleaning ani-
malivores and phytophagous bats constitute more challenging
monitoring targets owing to higher average CV values and greater
variation among species and locations. Based on their analysis,
Gibbs et al. (1998) recommended longer time periods for monitor-
ing to compensate for high temporal variability and low statistical
power. Indeed, as our analyses showed, increasing the number of
monitoring years from 10 to 20 can successfully offset the gener-
ally low precision in estimates of abundance and in most cases
yield adequate statistical power.

Species that can be monitored effectively will likely differ be-
tween sites and regions, as species that are abundant in one loca-
tion may be less abundant or rare elsewhere. This was borne out to
some degree in the power simulations, especially for sampling
schemes involving three plots. Here, power estimates for particular
species (e.g. Artibeus jamaicensis, Lonchophylla thomasi, Lophostoma
silvicolum) sometimes varied quite substantially between loca-
tions, suggesting that a species may be reliably monitored at one
location but not at another (Tables 1 and 2).

Ubiquitous species are easiest to monitor, however, such spe-
cies also typically have broader habitat requirements that buffer
them from spatial and temporal environmental variation, suggest-
ing normally less sensitivity to disturbance, which then reduces
their value for monitoring (Carlson and Schmiegelow, 2002). Con-
versely, rare species, although inherently of greater monitoring
interest, will require increased sampling effort to compensate for
high sampling error and high natural variability that often results
from specialized habitat requirements. Costs associated with mon-
itoring such species may be excessive. In such instances, it has
been advocated to select target species for monitoring that are sen-
sitive to disturbance, yet exhibit relative temporal stability in esti-

mates of abundance (Carlson and Schmiegelow, 2002). Based on
these criteria, phytophagous species such as Carollia perspicillata
or Rhinophylla pumilio may be examples of efficient targets for
monitoring. Likewise, certain gleaning animalivores such as
Lophostoma silvicolum, Trachops cirrhosus, and Nycteris arge also
constitute potentially important species for monitoring.

For certain target species long-term monitoring of day roosts
may constitute a suitable complementary approach to relative
abundance estimates based on capture or acoustic data, which
may strongly reduce the variance in estimates of population abun-
dance. This could for instance be a feasible strategy for colonial fly-
ing fox species such as Eidolon helvum in Africa or Pteropus spp. in
South East Asia, or cave-roosting species (Epstein et al., 2009; New-
son et al., 2009).

While power analyses are most appropriately employed prior to
implementation of a monitoring program for determining optimal
study design, the detection of trends can be improved by the use of
statistical models that include covariates that effectively remove
some of the ‘noise’ that may otherwise obscure trends (e.g. to ac-
count for habitat effects or site variability; Fewster et al., 2000;
Purcell et al., 2005). We generally advocate that such an approach
be taken with the data generated from bat monitoring programs.

Methods for estimating abundance and detection probabilities
on sample units can be expensive in both time and effort. One po-
tential approach to reducing effort in large-scale monitoring pro-
grams involves a shift from count surveys to presence–absence
data obtained on sampling units (MacKenzie et al., 2005). Pres-
ence–absence surveys, which are generally relatively easy and effi-
cient to conduct, have become more commonly the focus of
monitoring programs in recent years (Marsh and Trenham,
2008). Estimation approaches developed for occupancy surveys
incorporate detection probability directly into the estimation pro-
cess (MacKenzie and Kendall, 2002; MacKenzie et al., 2005; Nic-
hols et al., 2008; Royle and Nichols, 2003) and thus deal
appropriately with this fundamental component of estimating ani-
mal abundance. Extensions of these models have recently been
developed also for count data (Kéry et al., 2009; Kéry and Royle,
2010). Although presence–absence data may provide an adequate
indicator (Joseph et al., 2006), its sensitivity in diagnosing popula-
tion change depends on the relationship between abundance and
occupancy (Holt et al., 2002). It is likely, for example, that changes
in presence–absence are not detected until a precipitous decline in
abundance has already occurred. Thus, trend detection based on
abundance data may be more statistically powerful than pres-
ence–absence data, but also potentially more expensive (Field
et al., 2005). Quantitative guidelines for choosing between pres-
ence–absence surveys and count surveys depend on the biological
and logistical constraints governing a conservation monitoring ef-
fort. A recent study by Pollock (2006) suggests that presence–ab-
sence surveys work best when there is little variability in
abundance among survey sites and the target species is rare and
difficult to detect so that the time spent getting to each survey site
is less than or equal to the time spent surveying each site; count
surveys work best otherwise. Although we did not specifically
evaluate species occupancy as a potentially appropriate state vari-
able for a bat monitoring program, we recommend that occupancy
analyses be incorporated into any monitoring data analyses and
the relative benefits and drawbacks of such an approach relative
to an abundance-based approach be considered.

4.1. Conclusions and recommendations

The detection of temporal patterns in population abundance is
an issue central to most monitoring programs (Marsh and
Trenham, 2008). So far, approaches to vertebrate monitoring in
the tropics have been mostly limited to birds and in a few cases
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to small or large, non-volant mammals. Our findings suggest that
inclusion of bats as a group of crucial ecological importance in
tropical ecosystems into long-term monitoring programs is feasi-
ble given that temporal changes in species abundance can be as-
sessed with an adequate level of statistical power for a range of
species from different functional groups. Based on our results, we
make the following recommendations on study design for a long-
term monitoring program of tropical bats:

(1) Given that the time frame over which monitoring is carried
out is crucial for achieving adequate power for detection of long-
term population trends, we recommend that monitoring data be
collected over a time span of at least 15 years and we encourage
studies of 20 years’ duration to ensure that reliable trend analysis
will be possible for a larger number of species. We would advise
against sampling for fewer years unless the number of plots being
monitored and the number of visits per plot is increased consider-
ably beyond the values examined in this study.

(2) Cost-effectiveness is an important consideration in long-
term monitoring programs (Gardner et al., 2008). Given the limited
budget of most conservation projects, we propose a biennial sam-
pling scheme, which would still allow for reliable trend detection
while providing considerable savings in terms of survey costs.

(3) Based on our results, we recommend conducting monitoring
surveys on at least five spatial replicates per monitoring location.

(4) The interpretation of trends from raw species counts is al-
ways complicated by imperfect detectability (Kéry et al., 2009).
Optimal survey design thus requires a sufficient number of tempo-
ral replicate observations on the same monitoring plot. Species
detectability was found to be highly variable in our datasets
(Meyer et al., unpublished data). For a monitoring program we
would therefore recommend four within-year visits per plot, which
we suggest should be timed to coincide with the major seasonal
periods (typically the peak dry and wet seasons, as well as corre-
sponding transitional periods). Such a sampling scheme would al-
low for reliable estimation of species detectability and the
detection of seasonal, annual, and multi-annual trends also of low-
er magnitude (5% changes). It would further ensure that newly
developed hierarchical mixture models that explicitly correct for
imperfect detection (Kéry et al., 2009; Kéry and Royle, 2010) can
be applied at the analysis stage.

(5) Species that provide useful data for detailed population
monitoring (e.g. indicator species for habitat quality) need to be
carefully selected. We recommend that choices of species on the
local scale be based on reasonably high abundance and low CV as
well as on important ecological functions. A priori site-specific
knowledge of the ecology and abundance of species based on field
data and/or a literature search will thus be essential for a reasoned
pre-selection of species for the analysis of population trends.

(6) Relatively low temporal variation in abundance measures
(this study) and high species detectability (Meyer et al., unpub-
lished data) suggest that aerial insectivorous bats constitute a suit-
able target group for monitoring. We therefore recommend
complementing mist net captures with acoustic surveys (Flaquer
et al., 2007; Kunz and Parsons, 2009), especially since the latter
have been shown to be indispensable for maximizing inventory
completeness in tropical bat surveys (Furey et al., 2009; MacSwiney
et al., 2008). Moreover, advances in acoustic technology now make
acoustic sampling increasingly efficient and affordable. In this con-
text, we advocate the application of transect-based sampling using
acoustic point counts to maximize the output of acoustic surveys in
terms of species detection (Estrada Villegas et al., 2010).

(7) Because many species are seldom captured in ground-based
mist nets we advocate the use of multiple capture methods. Can-
opy nets and, particularly in the Paleotropics, also harp traps have
been successfully employed in a number of recent studies (e.g.
Clarke et al., 2005; Fahr and Kalko, 2010; Furey et al., 2010; Kings-

ton et al., 2006; Meyer and Kalko, 2008) and are an important
means of increasing the detection of rare and uncommon species.

(8) We emphasize the importance of standardizing sampling
design and sampling effort as much as possible during monitoring
surveys.

From our results it is obvious that in order to be statistically
defensible the successful implementation of a long-term monitor-
ing program for tropical bats would entail considerable efforts in
terms of both substantial monetary costs and time investment.
We are aware that this may discourage potential funding bodies
from becoming involved in such an endeavor, particularly in light
of the general underfunding of conservation-oriented research in
the tropics (Balmford and Whitten, 2003). Nonetheless, given the
enormous potential of bats as indicators of human-induced
changes in climate and habitat quality (Jones et al., 2009), we be-
lieve it is hard to overstate the importance of incorporating bats
into long-term monitoring schemes so the potential of this highly
diverse and ecologically important group of mammals as a sensi-
tive indicator group for the status of tropical forests can be fully
realized.
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